If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2+20k-57=0
a = 8; b = 20; c = -57;
Δ = b2-4ac
Δ = 202-4·8·(-57)
Δ = 2224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2224}=\sqrt{16*139}=\sqrt{16}*\sqrt{139}=4\sqrt{139}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{139}}{2*8}=\frac{-20-4\sqrt{139}}{16} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{139}}{2*8}=\frac{-20+4\sqrt{139}}{16} $
| 5+2a=17 | | 3(p+2)=22(p+3) | | x^2+6x=66 | | 5+2a=27 | | 8x-20+4x+32=15-6x+17+10x | | 7x+1=9x-29 | | 3+6x=588 | | 9x-2=8x+1 | | x+x+1=210 | | x^2-2x-17=6 | | 5x+(x+5)(x+3)=143 | | 17=6-3(5-2x) | | 2+7x4=30 | | m÷2=32 | | 9x+64=16 | | 6=6(x-8) | | 360=6x-78 | | 3x+12=4x-18 | | -12=(x-5) | | 5(4+3y)=50 | | 5(y-4)=6(-4y-13) | | 8(3+2x)=32 | | 2x-1+2x=14 | | 5a-6=3a+12 | | 5g=7g+1-2g | | 10(3y-9)=30 | | 2(2x-55)=12 | | 3(p+4)=36 | | 4=9x+64 | | 5x-20+8=2x | | 8x+8=5x-7 | | .75y-5=19 |